

Woodley CofE Primary Calculation Policy

Mathematics Mastery

At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

Background

The 2014 Primary National Curriculum for mathematics differs from its predecessor in many ways. Alongside the end of Key Stage year expectations, there are suggested goals for each year; there is also an emphasis on depth before breadth and a greater expectation of what children should achieve. In addition, there is a whole new assessment method, as the removal of levels gives schools greater freedom to develop and use their own systems. One of the key differences is the level of detail included, indicating what children should be learning and when. This is suggested content for each year group, but schools have been given autonomy to introduce content earlier or later, with the expectation that by the end of each key stage the required content has been covered. For example, in Year 2, it is suggested that children should be able to 'add and subtract one-digit and two-digit numbers to 20, including zero' and a few years later, in Year 5, they should be able to 'add and subtract whole numbers with more than four digits, including using formal written methods (columnar addition and subtraction)'. In many ways, these specific objectives make it easier for teachers to plan a coherent approach to the development of pupils' calculation skills. However, the expectation of using formal methods is rightly coupled with the explicit requirement for children to use concrete materials and create pictorial representations — a key component of the mastery approach.

Mathematical Language

The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (*reasoning*). Indeed, in certain year groups, the non-statutory guidance highlights the requirement for children to extend their language around certain concepts. It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct. The school agreed list of terminology is located at Appendix A to this document.

The quality and variety of language that pupils hear and speak are key factors in developing their mathematical vocabulary and presenting a mathematical justification, argument or proof.

2014 Maths Programme of Study

How to use the policy

This mathematics policy is a guide for all staff at Woodley Cofe Primary school and has been adapted from work by the NCETM. It is purposely set out as a progression of mathematical skills and not into year group phases to encourage a flexible approach to teaching and learning. It is expected that teachers will use their professional judgement as to when consolidation of existing skills is required or if to move onto the next concept. However, the **focus must always remain on breadth and depth rather than** accelerating through concepts. Children should not be extended with new learning before they are ready, they should deepen their conceptual understanding by tackling challenging and varied problems. All teachers have been given the scheme of work from the White Rose Maths Hub and are required to base their planning around their year groups modules and/or Chris Quigley Milestones and not to move onto a higher year groups scheme work.

Teachers can use any teaching resources that they wish to use and the policy does not recommend one set of resources over another, rather that, a variety of resources are used. For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach [Make it, Draw it, Write it] is for children to have a true understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Calculation Policy - Page 2 of 14

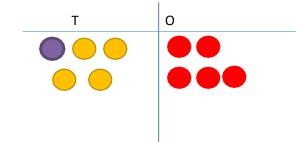
Addition

Progression in Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	Use the part-part whole diagram as shown above to move into the abstract. 4 + 3 = 7 10= 6 + 4
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	12+5=17 $10 11 12 13 14 15 16 17 18 19 20$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.	6 + 5 = 11 Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10. 3 + 9 = 9 + 5 = 14 1 4 + 4 1 4 + 4 1 4 + 5 6 7 8 9 (10) 11 12 13 (14) 15 16 17 18 19 20	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	4 + 7 + 6= 17 Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make 10 and then add on the remainder.

24 + 15=

Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.

Т	0

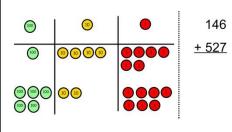

Column method- no regrouping (No

Carrying)

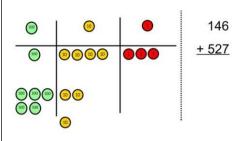
Column method- regrouping (Carrying)

10	•
00000	0000
10	00000

After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.



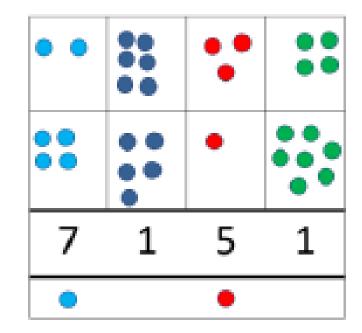
<u>Calculations</u>


21

+ 42

Make both numbers on a place value grid.

Add up the units and exchange 10 ones for one 10.



Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.

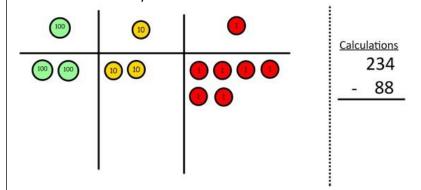
This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.

As children move on to decimals, money and decimal place value counters can be used to support learning.

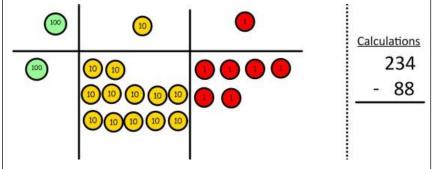
Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.

Start by partitioning the numbers before moving on to clearly show the exchange below the addition.

As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

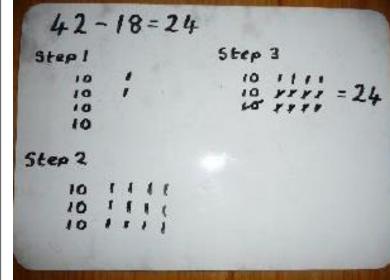

Subtraction

Progression in Strategies	Concrete	Pictorial	Abstract
	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	
Taking away ones	6-2=4		18 -3= 15 8 - 2 = 6
	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones.	15-3 = 12 Count back on a number line or number track $9 10 11 12 13 14 15$	
Counting back	Use counters and move them away from the group as you take them away counting backwards as you go.	Start at the bigger number and count back the smaller number showing the jumps on the number line. -10 -10 -10 34 35 36 37 47 57	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.
	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference	This can progress all the way to counting back using two 2 digit numbers. Count on to find the difference.	
Find the difference	Use basic bar models with items to find the difference.	Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. 13 ? Lisa Sister	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.

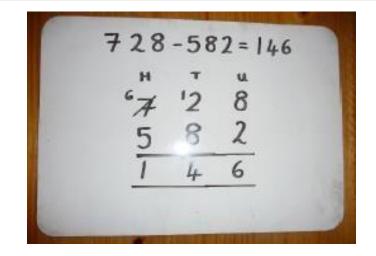


Now I can subtract my ones.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.



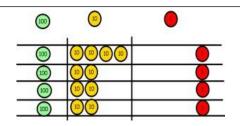
Now I can take away eight tens and complete my subtraction


100	(10)	0	<u>Calculations</u>
100	10 10		' 23 4 - 88 146

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

When confident, children can find their own way to record the exchange/regrouping.

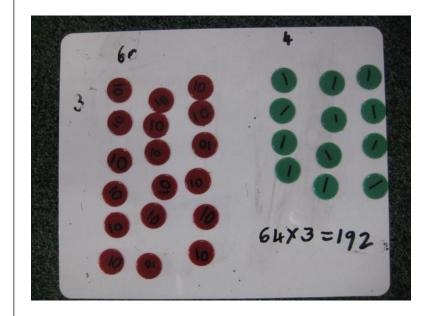
Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.



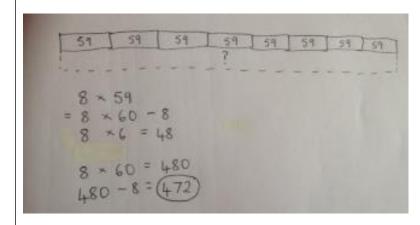
Moving forward the children use a more compact method.

This will lead to an understanding of subtracting any number including decimals.

Multiplication


Progression in Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Double 4 is 8	Partition a number and then double each part before recombining it back together. 10 6
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30
Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 5 + 5 + 5 = 15	Write addition sentences to describe objects and pictures. $2+2+2+2+2=10$
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition.

Then you have your answer.


100 100	•
100	0
100	1
100	

Children can continue to be supported by place value counters at the stage of multiplication.

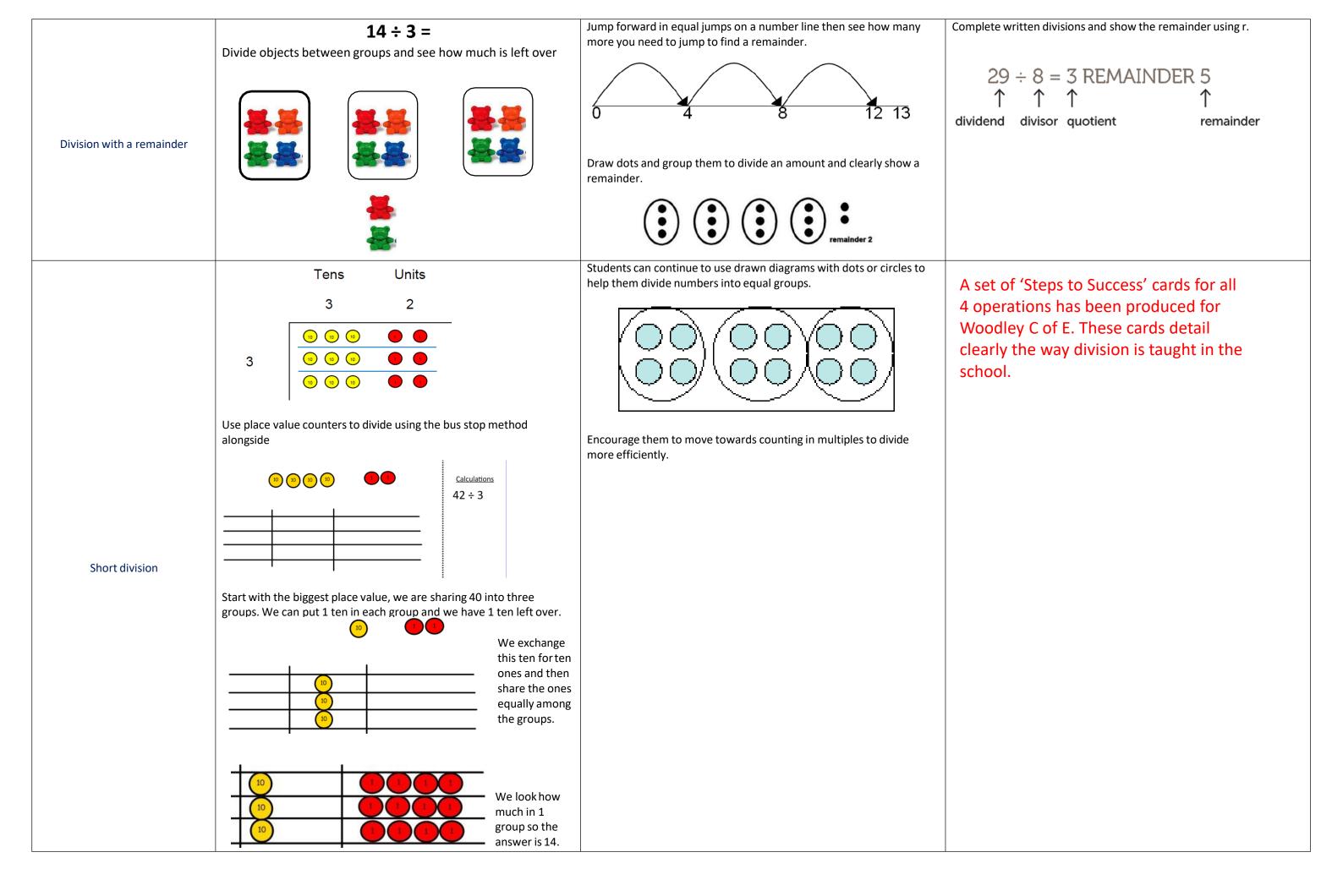
Column multiplication

It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.

10 litres or 10000ml

250ml 3 250ml 8 250ml 16 250ml

4 250ml 4 250ml 61 101


4 + 4 + 8 + 8 + 16

5 * 8 = 40 jug6-

A set of 'Steps to Success' cards for all 4 operations has been produced for Woodley C of E. These cards detail clearly the way multiplication is taught in the school.

Division

Progression in Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2 = 4$	Share 9 buns between three people. $9 \div 3 = 3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96 \div 3 = 32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. E.g. $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $ 7 \times 4 = 28 $ $ 4 \times 7 = 28 $ $ 28 \div 7 = 4 $ $ 28 \div 4 = 7 $

