Woodley CofE Primary
 Calculation Policy

Mathematics Mastery

 concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

Background

Mathematical Language

The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (reasoning). Indeed, in certain year groups, the non-statutory guidance highlights the requirement for children to extend their language around certain concepts. It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct. The school agreed list of terminology is located at Appendix A to this document.

The quality and variety of language that pupils hear and speak are key factors in developing their mathematical vocabulary and presenting a mathematical justification

 argument or proof.2014 Maths Programme of Study

How to use the policy

 from the White Rose Maths Hub and are required to base their planning around their year groups modules and/or Chris Quigley Milestones and not to move onto a higher year groups scheme work.

 of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Progression in Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model			Use the part-part whole diagram as shown above to move into the abstract.$\begin{gathered} 4+3=7 \\ 10=6+4 \end{gathered}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10 . $9+5=14$ 14 4	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more doladd on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.		$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Column method- no regrouping (No Carrying)	$24 \text { + 15= }$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$
Column method- regrouping (Carrying)	Make both numbers on a place value grid. 146 Add up the units and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. As children move on to decimals, money and decimal place value counters can be used to support learning.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13 \end{aligned}=73 \quad \begin{array}{r} 536 \\ \frac{+85}{11} \end{array}$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

Progression in Strategies

Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.
Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	Children can start their formal written method by partitioning the number into clear place value columns.

Multiplication

Progression in Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. double 4 is 3 $4 \times 2=8$	Draw pictures to show how to double a number. Double 4 is 8 \square \square \square \square \square \square \square \square	
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$
Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures. $2+2+2+2+2=10$
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	 $0000^{4 \times 2=8}$ Draw arrays in different rotations to find commutative multiplication sentences. $2 \times 4-8$ $000^{2 \times 4=8}$ $4 \times 2=8$	Use an array to write multiplication sentences and reinforce repeated addition.

	 Then you have your answer.		
	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. 10. latre $250 \mathrm{ch}] \longrightarrow$ $\begin{aligned} & 4+4+8+8+16 \\ & 5 \times 8=40 \text { ju9s } \end{aligned}$	A set of 'Steps to Success' cards for all 4 operations has been produced for Woodley C of E . These cards detail clearly the way multiplication is taught in the school.

Division
Progression in Strategies
(3 =

